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A theory of globally convergent trust-region methods for self-consistent field elec-
tronic structure calculations that use the density matrices as variables is developed. The
optimization is performed by means of sequential global minimizations of a quadratic
model of the true energy. The global minimization of this quadratic model, subject to
the idempotency of the density matrix and the rank constraint, coincides with the fixed-
point iteration. We prove that the global minimization of this quadratic model subject
to the restrictions and smaller trust regions corresponds to the solution of level-shifted
equations. The precise implementation of algorithms leading to global convergence is
stated and a proof of global convergence is provided. Numerical experiments confirm
theoretical predictions and practical convergence is obtained for difficult cases, even if
their geometries are highly distorted. The reduction of the trust region is performed by
a strategy that uses the structure of the energy function providing the algorithm with a
nice practical behavior. This framework may be applied to any problem with idempo-
tency constraints and for which the derivative of the objective function is a symmetric
matrix. Therefore, application to calculations based both on Hartree-Fock or Kohn-—
Sham density functional theory are straightforward.
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1. Introduction

Recent developments on the mathematical theory of self-consistent field
(SCF) electronic structure calculations have provided algorithms of increased
robustness [1-6]. Robustness, efficiency and user-independence are required for
SCF calculations to become routinely used for obtaining the electronic structure
of complex molecular systems, and also for the algorithms to be used safely by
non-experts.

The first and basic algorithm considered for solving SCF equations was the
well known fixed-point method [7]. This method converges only for very well
behaved cases and it was soon realized that it could not be trusted for solving
the Hartree—Fock (HF) equations of most molecular systems. Several approaches
were developed in order to obtain more reliable algorithms: The classical New-
ton and conjugate gradient optimization methods were applied to parametrized
versions of the SCF equations [8,9] and very successful accelerations, particularly
the DIIS method of Pulay [10,11], provided greater stability for the fixed-point
iteration. More recently, Cancés and Le Bris used the structure of the HF equa-
tions in an very elegant manner and proposed the optimal damping algorithm
(ODA), for which they proved global convergence whenever the iterates satisfy
the Uniform-Well Posedness assumption [1,2]. The ODA was observed to have a
slow convergence and a combination of ODA with DIIS called EDIIS was pro-
posed by Kudin et al. [12] for which increased robustness is obtained relative to
DIIS. The successful implementation of EDIIS led it to be implemented in the
Gaussian package [13].

Also recently, Thogersen et al. and the authors of the present work
started working on the application of trust-region strategies for the SCF prob-
lem [3,5,14]. In our previous work, we defined a general globally convergent
algorithm applicable to the SCF equations. A theoretical framework for this
algorithm and its variations was developed and global convergence was proved
without any assumption on the sequence of iterates [5]. Our approach was based
on the minimization of a quadratic approximation of the energy as is usu-
ally expected from a trust-region algorithm. We noted that, although conver-
gence was achieved in all problems, as expected, it was slow. That was basically
because we used a very crude quadratic approximation that was based on the
energy as a function of the coefficient matrix. Thogersen et al. [3,4] on the other
hand, addressed the problem of minimizing the energy as function of the density
matrix originally in HF and more recently Kohn-Sham density functional the-
ory SCF calculations. Since the energy in HF equations is quadratic as a func-
tion of the density matrix, it is expected the optimization algorithms to behave
better when the variable is the Density. Indeed, they have shown a very nice
practical behavior when their trust-region based algorithm was coupled with also
trust-region-based accelerations. Their approach is very interesting, but it is not
a rigorous application of a full-featured trust-region method.
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In this paper we develop the theory and the basic algorithm required for
a full-featured, globally convergent algorithm for SCF calculations based on
density matrices. Our approach has a close correspondence with the work of
Thogersen et al., but the precise use of the trust-region structure provides the
algorithm with global convergence properties. In the development of our partic-
ular implementation of the method, we also use the structure of the HF equa-
tions, employed originally by the ODA algorithm, resulting on a density-based
trust-region method with very nice practical behavior even without accelerations.

This paper is organized as follows. In section 2 we overview the funda-
mental properties of globally convergent trust-region methods. In section 3 we
define the optimization problems that we aim to solve using the trust-region
approach. This class of problems includes Hartree—Fock and Kohn-Sham SCF
calculations. In section 4 we describe the quadratic subproblems and we prove
a theorem that gives their exact global solution. In section 5 we define the
density-based globally convergent trust-region method (DGTR). In section 6 we
discuss the arguments that lead to global convergence. In section 7 we describe
the choice of the trust-region size (or, equivalently, Levenberg—Marquardt param-
eter). In section 8 we show numerical experiments and discuss how accelerations
or non-monotone strategies may be coupled with DGTR methods. Conclusions
are stated in section 9. The appendix A contains the rigorous proof of the main
theorem in section 4.

2. Fundamentals of trust-region methods

The classical constrained optimization problem consists in the minimiza-
tion of a scalar multivariate function subject to constraints which, in general, are
described by equalities and inequalities. Trust-region methods for unconstrained
optimization were introduced by Powell in 1970 [15,16]. Powerful convergence
properties were proved by Sorensen in 1982 [17]. Trust-region ideas were used
in sequential quadratic algorithms (SQP) for constrained optimization [15]. At
each iteration of SQP, the feasible set is approximated by a polyhedron and the
objective function is modeled by a quadratic. Only in 1995, Martinez and Santos
[18] proposed a trust-region method for constrained optimization where the fea-
sible set is not approximated at all by its linearization. As most numerical algo-
rithms for non-linear optimization, the trust-region method [18] is iterative and
generates a sequence of feasible points such that the objective function decreases
monotonically. Given the current iterate, the steps that lead to a better approxi-
mation to the solution may be sketched as follows.

1. Define a quadratic model for the objective function.

2. Minimize the quadratic model on the intersection of the feasible set and
the trust region. The minimizer of the quadratic so far obtained is called
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“trial point”. The difference between the quadratic function values at
the current point and at the trial point is called “Predicted reduction”
(Pred).

3. The “Actual reduction” (Ared) is the difference between the objective
function values at the current point and at the trial point. If Ared is large
enough when compared with Pred, the trial point is “accepted”. If this is
not the case, the radius of the trust region is reduced and the quadratic
minimization step is repeated.

4. In the case of acceptance of the trial point, the new iterate is chosen as
any feasible point such that the objective function value is less than or
equal to the one at the accepted trial point.

The quadratic model must be an approximation of the true objective func-
tion. This requires that the gradient of the quadratic model must be the gradi-
ent of the objective function at the current point. It is desirable that the second
derivatives of the quadratic model also coincide with the second derivatives of
the objective function at the current point but, many times, this is not possible.
In any case, the gradient agreement guarantees that, close to a non-critical cur-
rent point, the decrease of the quadratic model implies the sufficient decrease of
the objective function. Therefore, after a finite number of reductions of the trust-
region radius, the trial point is necessarily accepted.

A critical feasible point is a point that satisfies some optimality condition of
non-linear optimization. Global convergence results usually say that limit points
generated by optimization algorithms are critical. In the case of the trust-region
framework, for getting global convergence it is essential that the trial point sat-
isfies a sufficient descent condition (Ared must be at least a fraction of Pred)
instead of a single descent condition (Ared positive). Moreover, in the trust-
region convergence theory the trust regions are “balls” (set of points whose “dis-
tance” to the current point is less than or equal to a given trust-region radius)
although different definitions of distance may be employed.

The accepted trial point is not necessarily the point adopted as new iter-
ate. Very frequently one tries something “even better”, and the only requirement
for this “accelerated” point is the decrease of the objective function value with
respect to the trial point. Most times, this acceleration device is not mentioned
in global convergence theories which, on the other hand, hold straightforwardly
employing the acceleration. In practical implementations, however, acceleration
steps are very popular [19].

The main drawback for the implementation of the trust-region method on
arbitrary domains [18] sketched above is that the subproblem of minimizing
the quadratic on the intersection of the feasible set and the trust region may
be very difficult. A “Levenberg—Marquardt”-like modification of the basic algo-
rithm [5,14] removes, partially, this drawback. Instead of dealing directly with
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the trust region, a penalty term is added to the quadratic objective function of
the subproblem and the trust-region constraint is eliminated. The penalty term
is proportional to the (squared) distance to the current point and depends on
a penalty parameter that is increased when the actual reduction fails to be suffi-
ciently larger than the predicted reduction. It may be proved [5,14] that the effect
of increasing the penalty parameter is the same as the effect of decreasing the
trust-region radius. Roughly speaking, this implies that the convergence proper-
ties of the Levenberg—-Marquardt-like modification are the same as the conver-
gence properties of the pure trust-region method [18].

Thanks to the Levenberg—Marquardt modification, the trust-region method
becomes implementable in many cases in which the practical solution of the sub-
problem seems to be impossible. However, the applicability of the method is still
subject to the solvability of a quadratic subproblem on the feasible region.

3.  Optimization problems in SCF electronic structure calculations

Here we give precise definitions of the optimization problems studied. We
first provide a very general definition in order to stimulate theoretical work from
the optimization community. Next, we define the particular case of closed-shell
restricted HF equations that are explicitly studied in this paper. We note, how-
ever, that all the methods presented here could well be applied to any problem
that fit into the general formulation, as do electronic structure calculations based
on Kohn—-Sham density functional theory.

3.1. General formulation

The general problem that we have in mind is
Minimize E(D) subject to D € M, (1)
where
M={D e RK*X | pSD = D, D" = D, Tt(DS) = N} )

and S is symmetric and positive definite. We assume that VE(D) is a symmetric
K x K matrix.

It is generally accepted that the global minimizer of electronic structure cal-
culations must be aufbau. This has a precise meaning for HF equations related
to the construction of the density matrix from the set of eigenvectors of the
Fock matrix corresponding to N lowest eigenvalues (see below). A proof for
infinite-dimension, unrestricted HF equations that the global minimizer is aufbau
was given by Lions [20]. His proof cannot be straightforwardly adapted to other
problems.
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The theoretical framework of the algorithm presented here led us to define
an aufbau point as a global minimizer of the linear approximation of the objective
function in the feasible set. We believe that this general definition, which is appli-
cable to any optimization problem, could be valuable for further efforts in order
to solve the following questions in more general terms: Which should the proper-
ties of the objective function and the constraints be for the global minimizers be
aufbau? Is it possible to develop an algorithm that converges necessarily to auf-
bau solutions? The answer of both these questions would be of great value for
the theoretical comprehension of the electronic structure optimization problem.

3.2. Closed-shell restricted HF equations

The optimization problem in closed-shell restricted HF equations can be
expressed in the following way [7]:

Minimize Escp(D) subject to D € M, 3

where
Escr(D) = TI‘|:2HD + G(D)Di|.

D is the one-electron density matrix in the atomic-orbital basis, H is the one-
electron Hamiltonian matrix, G(D) is given by

K K

Gu,v(D) = Z Z(Zg/wpa - g,ua,ov)Da,o’

p=1o=1

Suvpo 18 @ two-electron integral in the AO basis, K is the number of functions in
the basis and 2N is the number of electrons.
Clearly [7]:

VEscr(D) =2F(D),
where
F(D) = H + G(D).

F (D) is known as the Fock Matrix. Since G(D) is linear, the function Escp(D)
is quadratic.

The matrices D that belong to M may be written as D = CCT, where C
is a real K x N matrix with S-orthonormal columns. That is, CT SC is the Iden-
tity N x N matrix. With this replacement, the problem (3) may be formulated
in terms of the “Coefficients matrix” C. A Levenberg-Marquardt-trust-region
method for solving this reformulation was introduced in [5]. Here we will con-
centrate ourselves on the Density-matrix formulation (3).
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4. Quadratic subproblem

We aim to solve (1) using the trust-region framework and assuming that the
current iterate is the matrix D. We need a quadratic approximation of E(D) with
the condition that the gradient of the quadratic should be VE(D). The simplest
form of a quadratic approximation is the linear approximation:

Ly(D) = E(D) + Tr[VE([))(D - D)}. 4)

This approximation satisfies the requirement VL;(D)=VE (D) and, thus, defines
an admissible model.

According to the trust-region philosophy, the subproblem at iteration k
should be:

Minimize Ly (D) subject to D € M, |D — D|| < A, (5)

where A is the trust-region radius and ||.| represents a norm in the space of
K x K matrices, which will be specified later.

Thogersen et al. [3] studied the application of this framework to the SCF
problem and to the Kohn—Sham problem [4]. They chose:

IA]l = |Alls = VTr(ASAS) = ||SY2 A8 F,

where || - || is the Frobenius norm (||A]% = > Zj Al.zj). They observed (equa-
tion (16) of [4]) that, when D € M,

|D — D|?> = —2Tr(DSDS) + 2N.

Accordingly, they replaced the trust-region constraint ||D— D| < A by the linear
equation

—2Tr(DSDS) + 2N = A?

and deduced the level-shifted [21] Roothan—Hall equations using the Lagrange
conditions of the modified form of (5). Our Theorem 1 below may be interpreted
as a rigorous justification of this procedure. The full rigorous justification is nec-
essary because the Lagrange conditions provide only necessary conditions for
local minimization and in the trust-region approach we wish the global solution
of (5).

The choice of ||-|| = ||-||s in (5) is crucial because, otherwise, subproblem (5)
should be very difficult (or impossible) to solve accurately. Using the Levenberg—
Marquardt approach, we may eliminate the trust-region constraint |[D — D|| <
A adding a penalty term to the objective function. In this way, we arrive to the
subproblem:

Minimize Li(D) + w||D — D|*> subject to D € M. (6)



356 J.B. Francisco et al.| Density-based globally convergent trust-region methods

Here, 1 > 0 is the penalty parameter associated with the trust-region constraint.
The effect of A — 0 is essentially the same of u — oo [5,14].
By (4), the subproblem (6) is equivalent to:

Minimize Tr[VE(D)(D — D)} +;LTr[(D—D)S(D — D)S:| subject to De M. (7)

The following theorem gives the exact global solution of (7). Its proof is
given in the appendix A.

Theorem 1. Let S, W and D be symmetric K x K real matrices. Assume that S
is positive definite. Let V = (V,..., Vy) € IRE*N be a matrix whose columns
Vi,..., Vy are generalized eigenvectors corresponding to the N smaller general-
ized eigenvalues of

W — uSDS.
(This means that Ay, ..., Ay are the smaller numbers that satisfy
[W—MSDS}V,-:,\Z-SV,-, i=1,...,N, ®)
and
VISV, =68 Vi# . ©)

Let Dyia = VVT. Then, Dy is a solution of

Minimize Tr[2W(D—l_))i|—|—,uTr[(D—l_))S(D — [))S}, subject to De M. (10)

Moreover, the optimum value of (10) is 2(A; 4+ -+ + An) + ¢, where
¢ = p[N + Tr[DSDS] — 2Tr[W D].

Taking W = VE(D)/2, theorem 1 shows that the trust-region subproblem
(7) 1s solvable and so, it can be the basis of a globally convergent Levenberg—
Marquardt trust-region algorithm. Observe that the assumption D € M is not
necessary in theorem 1.

Theorem 1 represents a rigorous justification for the fact that level-shifted Roo-
than—Hall equations provide global solutions of the trust-region subproblem (5).

Since theorem 1 is independent of the choice of W, it turns out that it may
be applied to the resolution of trust-region subproblems arising from any opti-
mization problem where the feasible set is M, given that the gradient of the
objective function is a symmetric matrix.
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If © = 0, the solution of (7) is a global minimizer of the linear approxima-
tion of Egcp on the feasible region M. This solution corresponds to the classical
fixed-point iteration for solving the SCF problem.

5.  Globally convergent trust-region method

Although we have in mind the SCF problem, the algorithm below apply to
any optimization problem of the form (1) to (2), given that, for all D, the gradi-
ent VE(D) is a symmetric K x K matrix. Moreover, the symmetry of VE(D) is
necessary only to show that the global solution of the trust-region subproblem

is as given by theorem 1.

Algorithm 1
Let @ € (0,1/2), ptmax > 0, 1 < Tpin < Tmax < 00.

Step 1. Choose Dy € M and set k < 0.
Step 2. Choose st € [0, max] and set @ < ffirst.
Step 3. Solve (7), using (8), with D = D; and obtaining the solution Dy (=
Dyria1 ().
Define
Pred = Li(D) — Li(Dyia) = E(D) = Li(Dyia)) = Tr[E(D)(D — D)].
If Pred = 0, terminate the execution of the algorithm.
Step 5. Define
Ared = E(D) — E(Dyia))-
If
Ared > oPred, (11)
compute Dy € M (acceleration) such that
E(Dg+1) < E(Dyial), (12)

set k < k+ 1 and go to Step 2.

If (11) does not hold, then, if u = 0 take ppew > 0. If & > 0, take ppew €
[Tmini> Tmax/]. Set p <= pnew and go to Step 3. 0
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6. Convergence proof arguments

The global convergence theory of [5,14,18] guarantees that limit points gen-
erated by Algorithm 1 are stationary (or critical). More specifically, this algo-
rithm is a particular case of Algorithm B2 of [5]. A small technical difficulty
must be removed. In the theory of [5] it is assumed that all the feasible points are
regular, a property that is not true if M is described in the form (2). However,
M can also be described as the set of K x K matrices such that D = XXT, with
X being a K x N matrices with S-orthonormal columns. In this way it is easy to
see that the set of pairs (D, X) that satisfy that property contains only regular
points. Therefore, the regularity argument invoked in the proof of Lemma B.2
of [5] remains valid. (Regularity is a property that depends of the representation
of the constraint set, but not of the constraint set itself.)

Let us review here the main features that imply global convergence of the
trust-region algorithm.

1. The sufficient descent condition. In (11) we require that the energy at the
new point is, not only smaller, but sufficiently smaller than the energy
at the current point Dy. Single descent is not enough for proving global
convergence. The reason is that, with a single descent condition, we
could obtain a sequence E(Dg) > E(Dy) > E(Dy)... that approximates
monotonically to a non-stationary point D. For example, if E(Dy) >
E(Dy41) > E(Dy)—e/2F for all k, we would have E(D) > E(Dy)—¢. The
value of o measures the desired degree of sufficient descent. There are
rival claims about the sensible value for @ both in trust-region as in line-
search optimization. A small value of « allows one to take larger steps
but, on the other hand, the descent could be unsatisfactory. In trust-
region methods @ = 0.1 is generally used, whereas in line-search algo-
rithm, o = 10~* is usually preferred.

2. Safeguarding parameter pmax. The initial penalty parameter employed at
iteration k of the algorithm must be smaller than a given number pmax.
This means that the initial trust-region radius used at iteration k should
not be very small. The reason is obvious: if one admits smaller and
smaller initial trust-region radii at different iterations, the sequence of
iterates Dy could converge, with monotonic decrease of the energy, to a
non-stationary point D. For example, if 0 < ||Dyy1 — Dyl < &/2F we
would have || Dy — D|| €, a restrictive property that, in general, is not
true at stationary points.

The argument above applies to the initial penalty parameter at iter-
ation k but not to the finally accepted one. In fact, we may finish the
iteration accepting © > max, but only after failures of the sufficient
descent condition (11). In other words, it is admissible a very small trust
region, if a larger one does not provide the necessary decrease, but one
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should always begin the iteration trying a “not very small” trust region
radius.

3. Penalty-increasing parameters. When Dy, does not satisfy the sufficient
descent condition (11) the penalty parameter u must be increased (the
trust region must be decreased). The increase of u must be controlled
by two parameters T, and Tmax. The minimum increase is controlled
by tmin > 1. This guarantees that, eventually, the penalty parameter at
iteration k is large enough, so that the sufficient decrease condition is
met. On the other hand, we cannot increase the penalty parameter very
abruptly and, for this reason, we Impose inew < TmaxMold- An abrupt
increase of u corresponds to an abrupt decrease of A and its effect could
be the same as the effect of beginning the iteration with excessively large
values of L.

It is worthwhile to stress that the fact that all the limit points are stationary
[5] only depend of the features mentioned above. In (12) the method is allowed
to choose a new point that could be even better than the finally accepted point
in the main block of the algorithm. Convergence proofs do not depend at all on
this choice, which, on the other hand, could be very important, or even essential,
for the efficiency of the algorithm.

7.  Choice of the trust-region size
7.1. TRRH method

The TRRH and TRSCF methods of Thogersen et al. [3,4] may be analyzed
under the framework of algorithm 1. The similarities are:

e The trial points are obtained using the subproblem (8). As we mentioned
in the previous section, Thogersen et al. [3] arrive to this problem consid-
ering the Lagrange equations associated with the boundary trust-region
subproblem. In theorem 1 we proved that, in fact, this solution gives the
global minimizer of the trust-region subproblem.

e A clever acceleration procedure is employed in [3,4] for obtaining a bet-
ter density matrix, as in (12). Their acceleration procedure is based on the
resolution of trust-region subproblems in an auxiliary space, generated by
the density matrices at previous iterations.

The main difference between algorithm 1 and the approach of [3,4] is that
Thogersen et al. [3,4] do not use the sufficient decrease condition (11) at all.
Instead, they require:

I Dsiar () — Dlls < 0.2V/N, (13)
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which is equivalent to the condition apy;, > 0.98 in [3]. Since ||D|ls = ~/N,
condition (13) means that the difference || D — Dyyalls is less than 20% the norm
of D.

In their implementation, Thogersen et al. [4] consider

Dysial(1) = Cirial () Curin ()", D = CCT,
where Cy, and C are S—orthonormal K x N matrices,

C=(d1,....0N), Cirial = (¢irial’ o ¢xia1).
They define, for alli =1,..., N,

N
alprb — Z(éjTS¢itrial)2’

j=1
and they require:

mina??’ > 0.98. (14)
It is easy to see that (14) implies (13).

Their procedure, may be schematized as follows [Lea Thogersen, private
communication [22]]:

1. If Dyq(0) satisfies (14), accept this Dy, and go to the acceleration
phase.

2. Otherwise, take e as the last number in the sequence {0, 10, 15,
20, 25, ...} that does not satisfy (14) and puign as the first number of this
sequence that satisfies (13).

3. Use a bisection procedure in the interval [wjef, trigne] for obtaining u €
[1ieft» Mright] satisfying (14) and such that u — 0.1 does not satisfy (14).
In other words, the equality should hold in (14) with precision 0.1.

Thogersen et al. [3,4] observe that, with this choice of u, the energy fre-
quently decreases and the HOMO-LUMO gap remains positive. However, energy
decrease is not always verified, as the numerical experiments will show. In order
to guarantee the decrease in energy at every iteration, the parameter u must be
increased (the trust region must be reduced) every time that an increase in energy
is obtained, and a new trial point must be computed. This is not done by the
TRRH strategy, which considers a trust region of constant size.

As the numerical experiments presented below show, an algorithm with a
fixed-size trust region is well behaved only far from the solution. We illustrate
the reason for this behavior by a simple example: The minimization of single
variable quadratic function. Recall that these methods are based on the global
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v

Dk+] D,.,

Figure 1. The effect of a trust region of constant size A in iterations far from a minimum (k) and

close to the solution (k’). The minimization of the linear approximation in this trust region pro-

vides a sufficient decrease of the quadratic function at iteration k, but results in an increase in the

value of the quadratic in iteration k. The point Dy 1 should not be accepted in order to achieve
convergence.

minimization of the linear approximation of the true energy at every iteration.
As can be seen in figure 1, when far from the solution the global minimization
of the linear approximation provides points with lower energy. However, when
the derivative of the objective function is small, the minimization of the linear
approximation may provide a new point that is on the other side of the min-
imum and that may have a higher energy. Even worse, if this point higher in
energy is accepted, the minimization of the linear approximation with the same
trust-region size might provide again the same point as before and the algo-
rithm will oscillate between these two points rather than converge to the min-
imum. This problem does not occur when points higher in energy are rejected
and the trust region is reduced, forcing the convergence to the energy minimum.
In the work of Thogersen et al. [3,4] this problem is overcome by the intro-
duction of very clever acceleration strategies that are also based on trust-region
arguments. The accelerations also provide the algorithms with high efficiency,
and we will briefly describe how they can be introduced in our DGTR methods
without affecting global convergence properties. Their actual implementation is
not the purpose of the current work.

7.2. Optimally damped DGTR

When Cancés and Le Bris first proposed the ODA, they used the interest-
ing property of the HF energy that, given a line in the density matrix space, it
is straightforward to compute the global minimizer of the unrestricted energy
along that line [1,2,12]. We extend this idea a little further: Suppose that we
have performed a fixed-point iteration that resulted in an increase in the energy.
The fixed-point iteration is the minimization of the linear approximation of the
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Figure 2. The optimally damped choice of ju: (a) The parabola joining the current point D and a

unsuccessful trial point Dy, is convex and its minimum is in the segment [D, Dyyja1]. The optimal

damp would be its minimizer, but it is not necessarily feasible. (b) The optimally damped choice of

w is such that, if the segment were feasible, the new trial point would coincide with the minimizer
of the energy along that segment.

energy, and the unrestricted energy function is quadratic as a function of the
density matrix. Figure 2(a) shows that the unrestricted energy function must be
convex in the line connecting the current point D and the rejected trial point
Diiar- This is a consequence of the derivative of the energy being the same as
the derivative of the linear approximation in D and of the energy (Escr) being
higher in Dy,. The minimizer of the unrestricted Egcp clearly must be in the
interval [D, Dya]. The minimizer of Escp in the segment [D, Dyq] can be read-
ily computed by the strategy of Cancés and Le Bris. Unfortunately, this mini-
mizer is not necessarily feasible and, therefore, it cannot be taken as the next
iterate of the DGTR algorithm (feasibility is necessary for all iterates in order
that the algorithm fits in the framework of trust region strategies on arbitrary
domains [5,18]).

Let us suppose, for a moment, that this minimizer is indeed feasible. An
excellent choice for the new trust region would be the trust region for which the
minimizer of the linear approximation coincides with the minimizer of Escp, as
shown in figure 2(b). This trust region corresponds to a particular value of the
wu parameter. This value of p is the one chosen in our optimally damped DGTR
algorithm. Accordingly to the DGTR scheme, the linear approximation of the
restricted energy function is globally minimized in the trust region defined by this
choice of . The decrease of the energy will be similar to the decrease expected
by the minimization of the unrestricted energy in the segment [D, Dy;,1] Whenever
there is a feasible point in the vicinity of the minimizer of Egcf.

The strategy can be precisely stated in the following way. Let us define the
parametric function ¢(¢) (¢ € [0, 1]) by

¢(t) = E(D + 1 (Dyial — D).
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Clearly, this function fits the conditions of having the same value and derivative
of E in D and the same value of E in Dy,

¢(0) = E(D), ¢'(0) = Ti[V E(D)(Dysial — D)1, (1) = E(Dyria),
even if E is not quadratic. For all ¢ € [0, 1] let p(z) be the parabola defined by

p0) = ¢(0), p'(0) = ¢'(0), p(1) = p(D).

Since Ared > oPred one has that p(1) > ap’(0), therefore the parabola is convex
as in figure 2.
From

p(@) = p(0) + p'(O) + p"(0)r*/2,
and the fact that p”(r) is constant, we obtain that
p" () =2[p(1) — p(0) — p'(0)] ] ] ]
=2[p(1) — ¢(0) — ¢'(0)] = 2(E(Dyia1) — E(D) — Tr[VE(D)(Dyyia1 — D)])

for all ¢. Since p is convex, we have that p”(¢) > 0. The minimizer of this parab-
ola is, therefore,

AN —Tt[V E(D)(Dyial — D)]
p"(0)  2(E(Duia) — E(D) — Tr[VE(D)(Dysiat — D)])’

min =
and the corresponding density matrix D is:
Dpyin = D + tiyin (Dyrial — D).
Now, we consider the restriction of (6) to the line [D, Dyiall:
Minimize Ly (D) 4 u||D — D||} subject to D = D +t(Dyja; — D), (15)

and we seek the value of u for which the solution of (15) is Dp,;,. It turns out
that this u is

@" (1)

/’LI’CC - =5
2| Dysiat — D113

Therefore, following the safeguards relative to the choice of ppew in algorithm 1,
we define:

Mnew = MaAX{TminMold, MIN{TmaxMLold, Mrec}}-

The choice of e admits a different interpretation: the objective function
of (6) with u = urec turns out to be a quadratic approximation of E(D) in the
sense that Ly (D)4 pirec|| D — l_)||fsw coincides with the interpolating parabola along
the line that joins D and Dyl
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The case of HF equations is especially interesting because, in this case,
Escr(D) is a quadratic and, so, the interpolating parabola coincides exactly with
Escr(D) along the line [D, Dyia]. In other words, p(t) = ¢(r) for all r. There-
fore, in that case, we also have that p’(1) = ¢/(1). So, since

p'(1) = p'(0) + p"(0),
we get the following formula for pirec:

Tr[(VE(Dyia)) — VE(D))(Dysial — D)]
2| Dyiat — D113

Mrec =

We note this strategy can also be used for Kohn—Sham density functional the-
ory based equations, but in that case the parabola p(¢) will not coincide exactly
with energy function because it is not quadratic [4,7]. In that case one would
expect this strategy to be less effective, although a more detailed study would be
required.

With regards to the choice of the first penalty parameter g, the large-
step alternative ug¢ = O is interesting because, in this way, the trial point cor-
responds to the classical fixed-point iteration in SCF calculations.

This choice of p has a close relationship with the well known spectral
choice in optimization, where

pirst = max{0, min{max, Mspect}s

and
Tr[(VEscr(Di—1) — VEscp(D))(Dg—1 — D)]

= . (16)
2| Dg—1 — DI3

Mspec =

When 1 = pspec the quadratic in (6) coincides with the parabolic interpolation of
the true objective function E (D) along all the line determined by Dj_; and Dy.
So, this quadratic is a nice approximation of the true objective function and its
minimization as a part of the resolution process is well justified. For discussions
and applications of the spectral parameter see [5, 23-29].

8.  Numerical experiments

We have performed 12 numerical experiments in order to test the properties
of the algorithm proposed here. These examples are divided in two sets. The first
set is composed of three diatomic molecules (Crp, CrC and Rhj), a tetrahedral
anion (RhF,), a Rhenium complex, and an ordered arrangement of litium and
fluorine atoms (challenging case provided by K. N. Kudin, personal communica-
tion). All these examples were already used in previous publications to test the
convergence of new algorithms or were observed to provide unusually difficult
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Table 1

Geometries and basis used for the numerical examples.
Molecule Geometry Basis
Diatomic molecules Bond length = 2.0 A STO-3G
Distorted diatomic Bond length = 10.0 A STO-3G
molecules
RhF, Tetrahedric, bond length = 2.57 A Ahlrichs VDZ and STO-3G on Rh
Distorted RhFZ Tetrahedric, bond length = 5.0 A Ahlrichs VDZ and STO-3G on Rh
Rhenium complex Given in Ref. [3] Ahlrichs VDZ and STO-3G on Rh
Distorted rhenium Coordinates on the example Ahlrichs VDZ
complex above are multiplied by 2. and STO-3G on Rh
LigFg See table A.1 STO-3G
Distorted LigFg Coordinates of the example STO-3G

above are multiplied by 2.

convergence for the algorithms here tested [3,9]. Well behaved examples are of
no interested here: The convergence behavior of DGTR algorithms is exactly the
same as pure fixed-point algorithm when the fixed-point iteration is able to pro-
vide a sufficient decrease of the energy function at every iteration. The second set
of tests is formed by the same set of molecules, but with highly distorted geom-
etries. Distorted geometries are recognized to cause convergence instabilities due
to the introduction of degenerescences, and, therefore, they are a good test to the
robustness of the DGTR algorithm. The basis sets used and the geometries used
are described in table 1.

In our implementation of DIIS, extrapolation is used from the second iter-
ation on. Therefore, the first extrapolation uses two residuals. The number of
residual vectors used is increased in the subsequent iterations up to a maximum
of 10. The parameters used in the OD-DGTR algorithm are « = 10™%, g = O,
Tmin = 1.1, Tmax = 100. If e 1s not larger than Ty, iold, WE compute ppew =
2u1ast- The GAMESS [30] package was used with the options SHIFT, DIIS and
SOSCEF set to true and other algorithms to false, except when SOSCF needed to
be set to false due convergence failtures caused by instabilities of matrix manip-
ulation (observed for distorted Crp and CrC and for RhF, in both geometries).
Therefore, the dynamical level shifting of GAMESS is used in combination with
DIIS and the SOSCF method is initiated when the orbital gradient falls bellow
0.25a.u. (as default). This provides a combination of algorithms that should pro-
vide a strong convergence behavior and is useful to compare the present method
with algorithms that are currently in use. A diagonalized Hamiltonian matrix
was used as initial guess in all cases.

The results of the numerical tests are summarized in table 2. For the
non-distorted geometries, both the DIIS algorithm and GAMESS behave very
well, considering the number of iterations to achieve convergence. Convergence
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Table 2
Comparison between DIIS, the unaccelerated TRRH, GAMESS and OD-DGTR.
Method
Molecule DIIS TRRH GAMESS OD-DGTR?
Non-distorted geometries
Cr, 10 30 18 13 (16)
CrC 30 200P 34 40 (62)
Rhj 10 200 16 17 (18)
RhF} 38 2000 36 37 (44)
LigFgy 88 200° 200° 39 (227)
Rh complex 22 200° 44 38 (85)
Distorted geometries
Cry 123 143 19 65 (83)
CrC 2000 150 104 45 (88)
Rh, 200° 200° 200b 51 (97)
RhF} 108 2000 100 76 (148)
LigFy 200° 200° 200P 92 (182)
Rh complex 2000 200° 127 152 (249)

4The number in parenthesis is the number of Fock matrix evaluations. For the other methods, the
of Fock matrix evaluations is equal to the number of iterations. bMaximum number of iterations
(200) achieved.

was achieved in less than 40 iterations in all but the LigF9 example by the
DIIS method. The GAMESS calculation converged for all but LigF¢ example.
The TRRH method is able to converge only for the Cr, example. Finally, as
expected, convergence is achieved for all tests by the OD-DGTR algorithm.
When comparing the number of iterations performed by DIIS versus OD-DGTR
we see that, for these non-distorted geometries, the DIIS acceleration provides a
faster convergence than OD-DGTR in most cases. The comparison is still more
favorable to DIIS when the number of Fock matrix evaluations (the number
between parentheses for OD-DGTR) is compared. For example, for the LigFg
test, OD-DGTR performs 39 iterations, but required a total of 227 Fock matrix
evaluations. The DIIS acceleration, on the other hand, requires only one Fock
matrix evaluation per iteration. The fact that a lower number of iterations is per-
formed by DIIS in these examples is not a surprise. For very well behaved tests,
OD-DGTR will perform exactly as a classical fixed-point iteration. Therefore, its
convergence will be clearly slower than the convergence of DIIS. For example, in
the Rh, test, only one trust-region reduction was required and, therefore, 17 of
the 18 iterations performed were simply fixed-point iterations. Of course, DIIS
would have accelerated convergence in this case. The LigFg and Rh complex
tests, however, must be considered apart. DIIS converged for these examples
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in 88 and 22 iterations, respectively, while OD-DGTR converged in 39 and 38
iterations, but requiring several more Fock matrix evaluations. We note, how-
ever, that the convergence of DIIS is not guaranteed. Indeed, Thogersen et al.
have published a result for the Rh complex in which they show that DIIS fails
to converge. At the same time, the GAMESS calculation failed to converge in
one of this examples even while the DIIS method was being applied. Obviously,
the convergence of DIIS is highly dependent on the number of residual vectors
used for extrapolation. The behavior of the combination of algorithms of the
GAMESS package is somewhat better than of the OD-DGTR method given the
number of iterations and Fock matrix evaluations for the cases for which it con-
verges. We note, however, that the way that this combination of methods is used
in GAMESS is optimized by experience, particularly the use of the SOSCF algo-
rithm near the minimum and the heuristic for setting the level-shifting parame-
ter at each iteration. On the other hand, the OD-DGTR method is applied as
is, and is not dependent on user deffined parameters.

For the distorted geometries, the comparison of the convergence properties
is quite different. Now, the DIIS acceleration is able to converge in only 2 of the
6 examples, and using more than 100 iterations in each case. The TRRH method
converges for the Cr, and CrC examples, using 143 and 150 iterations, respec-
tively. The GAMESS calculation converged for 4 of the 6 examples, being very
fast for the distorted Cr, test, but using more than 100 iterations in the other
three cases for which it converges. Finally, the OD-DGTR algorithm, although
employing more iterations than in the non-distorted cases, converged again in all
tests, as predicted by theory. The success of the optimally damped choice of the
trust region must also be noted, since the convergence occurred in less than 100
iterations for all but the Rh complex example.

The convergence behavior of the DIIS, TRRH and OD-DGTR methods
is represented in figure 3. An overall comparison of the convergence behavior
shows that DIIS, as is known, has a quite unpredictable convergence, oscillating
between several points even in the first iterations, even for problems for which
it finally achieves convergence. The TRRH method, on the other side, starts
with a very smooth convergence as seen in the first iterations, provided by the
short step given by the small trust region defined by the choice of the level-shift
parameter. However, when near the solution, convergence is not achieved and
the algorithm oscillates between two or more points. This behavior was expected
by the arguments given in the previous section (figure 1). Finally, the conver-
gence of the OD-DGTR algorithm is smooth both far an near the solution of
each problem. The energy decreases monotonically, as required by theory.

One should note that the convergence of the OD-DGTR method is faster
than the convergence of the TRRH method, even in the first iterations. This is
a consequence of the fact that each iteration of the OD-DGTR algorithm starts
with an infinitely large trust region (a fixed-point iteration is performed) and the
reduction of the trust region is given by the OD strategy. On the other hand,
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Figure 3. Comparison of the overall behavior of the three methods tested here. DIIS is very unpre-

dictable and oscillates from the first iterations even if it finally converges. TRRH behaves smoothly

when far from the solution, but oscillates when a minimum is approached. The OD-DGTR con-

verges smoothly in all cases, and the optimally damped choice of u provides a relatively fast energy
decrease.

the current implementation of the TRRH method requires that the new den-
sity matrix is near to previous density matrix by at least 20%. This prevents the
TRRH algorithm to have a faster convergence as these steps are too conserva-
tive, particularly when the algorithm is far from the solution.

A final comparison of the results is required for their full appreciation.
table 3 shows the relative energy of the solution found by each method in each
case. A zero indicate that the lowest energy solution was found with a preci-
sion of 1072, A positive value indicates how larger is the energy of the solu-
tion found by each method relatively to the best solution found. In well behaved
cases, the DIIS method is the most successful method for finding lowest energy
minima. It found the best solution for all but the CrC and RhF, tests. The
TRRH algorithm found the best solution in the case in which it converged. The
GAMESS calculation found the best solution for 3 of the 5 tests for which it
converged. Finally, the OD-DGTR algorithm found the best solution for 3 of
the 6 examples and found energies larger than the best solution for other three
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Table 3
Relative differences between the energies of the solutions and the lowest energy solution found by
all algorithms.

Method
Molecule DIIS TRRH GAMESS OD-DGTR
Non-distorted geometries
Cry 0 0 0 0
CrC 12x 1074 - 0 12x 1074
Rh; 0 - 3.0 x 1074 0
RhF} 3.6 1076 - 2.8 x 1073 0
LigFg 0 - - 5.6 x 1076
Rh complex 0 - 0 74 %1078
Distorted geometries
Cr, 3.0x 107 12x 1074 0 72 %1072
CrC - 0 1.1x 1074 4.6x 1074
Rhy - - - 0
RhF, 5.8 %1076 - 5.6 x 1073 0
LigFg - - - 0
Rh complex - - 0 33x107?

Zeroes indicate that the best point was found. Relative differences lower than 10~ are considered
Zero.

cases, although in one of these cases the relative difference to the best solution
found was less than 10~7. The tendency of DIIS to converge to lowest energy
solution comes from the fact that it can only converge to aufbau solutions and,
therefore, it is very aggressive in providing convergence to the global solution.

For the examples with distorted geometries, the best solution was found by
the GAMESS calculation for the Crp and the Rh complex examples and by the
TRRH algorithm for the CrC example. For the RhF, test the best solution was
found by the OD-DGTR method and, of course, the same happened for the Rhj
and LigF9 examples since this was the only method with which solutions were
found. The comparison of these energies show that there is still a need for algo-
rithms that strongly converge towards global minima, but that the OD-DGTR is
competitive with current algorithms in this sense.

The numerical examples show the robustness of the globally convergent trust-
region methods. Our previous GTR algorithm was also very robust, but it con-
verged very slowly [5]. The use of density matrices as variables for the optimi-
zation in the context of trust-region methods allows one to define an algorithm
with much higher efficiency, as was originally demonstrated by the TRSCF of
Thogersen et al. [3]. This is a simple consequence of the the energy being qua-
dratic as function of the density matrix. The use of the optimally damped strategy
to compute the trust regions also provides the algorithm with higher efficiency.
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8.1.  Accelerations and non-monotone strategies

All the comparisons made for the behavior of the OD-DGTR algorithm
are based on its pure implementation. The performance is good for problems
with convergence instabilities. However, as was already mentioned, it is not bet-
ter than the classical fixed-point algorithm if the fixed-point iteration provides
a sufficient decrease of the energy at every iteration. Therefore, it is not rec-
ommendable for being used in routine calculations. How should accelerations
or non-monotone strategies be incorporated to the DGTR framework without
affecting the robustness of the algorithm? Any acceleration may be incorporated,
provided that the accelerated point is feasible and the energy is at least as low
as the energy of the current point. For example, after each iteration of the OD-
DGTR algorithm, one could perform a DIIS extrapolation followed by a fixed-
point iteration (providing feasibility to the accelerated point). If the energy at the
accelerated point is lower than the energy at the current point, it can be accepted
as a new iterate without affecting at all the convergence properties of the algo-
rithm.

Non-monotone strategies can also be straightforwardly associated within
the DGTR framework. The only requirement, again, is that after some iterations
one obtains a feasible point with an energy at least as low as the energy of the
lowest energy point found. For example, one could let DIIS to dictate the con-
vergence with the sole requirement that, if after some number of DIIS iterations
the energy has not decreased, one returns to the current point and computes a
new trial point using the trust region strategy, until a lower energy density matrix
is found.

This opens the possibility for the implementation within the DGTR frame-
work of the novel and very effective accelerations schemes TRSCF and TRDSM
introduced by Thogersen et al. [3,4] or the EDIIS scheme proposed by Kudin
et al. [12], without affecting the robustness of the algorithm. Our claim is that
this algorithm may be routinely used as a safeguard for convergence when oscil-
lations or divergence are detected.

9. Conclusions and perspectives

In this paper we develop a theoretical framework of density based
algorithms for SCF electronic structure calculations. The main features of the
algorithm are a natural combination of previous developments on electronic struc-
ture calculations: The fixed-point iteration, the level-shifted equations and the
optimal damped strategy. We prove that the solution of the level-shifted equa-
tions is the global minimization of a linear model of the energy in a smaller trust
region defined by the level-shift parameter. The optimally damped choice of the
trust region provides the algorithm with a nice practical behavior for solving HF
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equations. Global convergence is obtained and, with the OD choice of the trust-
region size, the number of iterations is reasonable, even for very difficult cases.
Why couldn’t we call this a black-box algorithm yet? We believe the rea-
sons are two: First, as was already mentioned, the convergence of the algorithm
is not fast for well behaved cases, exactly resembling the fixed-point algorithm.
Therefore, new studies for the definition of the best coupling of this method
with accelerations and non-monotone strategies are required. Secondly, because
we cannot guarantee convergence to global minimizers or to aufbau fixed points.
No algorithm provides convergence to the global minimum and, therefore, unless
some novel insight is obtained on the structure of this problem, convergence
to global minimum will not be achieved by any means. On the other hand,
some algorithms, when they converge, necessarily converge to aufbau fixed points
(the fixed-point algorithm and DIIS, for example). This is somewhat desirable,
since these solutions are interpreted as the electronic ground-state of the mole-
cule under study. Again, for the development of a globally convergent algorithm
that converges only to aufbau solutions, novel insights will be needed, particu-
larly one would require a theoretical analysis of the type of functions for which
global minima are aufbau. The definition of aufbau points given in section 3.1
may facilitate the access of the mathematical community to this problem.
Nevertheless, the OD-DGTR algorithm seems to be the first rigorously glob-
ally convergent method that has a nice practical behavior. We believe that the
algorithm is ready to be implemented and tested in general purpose electronic
structure packages for being used as an automatic safeguard for convergence.

Appendix A
A.1.  Proof of theorem 1.

Define A = D — D. By direct manipulation of matrices we see that

2
Tr(ASAS) = HSWAS‘/2 (A.1)
F
Therefore, the subproblem (10) is:
~ _ 2
Minimize Tr|:2W(D — D)} + ,uHSl/z(D — D)S'/? (A.2)
F

subject to D € M.
For 1« = 0 the thesis follows as in theorem 3.1 of [5].
Let us change the variables in the following way:

Y =S'2psl/?,  yk=g2psl/?, (A.3)
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Then, the problem (A.2) can be reformulated as:

2
Minimize Tr[2WS_1/2(Y - Yk)S_l/2i| + MH y — v¥ (A.4)
F
subject to Y € N, where
N ={(D e R"*X | pp =D, D" = D, Tr(D) = N}.
Define
Gk — S_I/ZWS_UZ.
Since Tr(AB) = Tr(BA) we get that (A.4) is equivalent to
2 2
Minimize —Tr|:Gk(Y — Yk)} + HY — vk (A.5)
H F

subject to Y € N.
Manipulating the objective function of (A.5) we obtain that this problem is
equivalent to

Minimize |¥ — Z*||% subject to ¥ € N, (A.6)
where
1
zk =y* - ZG*. (A.7)
"

Assume that UXUT is the spectral diagonalization of Z*. Therefore, U is
unitary and X is diagonal. Since ||UA|r = ||AU||r = ||A||F for all A, we obtain
that (A.6) is equivalent to

Minimize |[UTYU — X||% subject to ¥ € N. (A.8)
F

But Y € N if, and only if, UTYU € N. So, the solution of (A.8) can be
expressed in the form

Yy=UzUT, (A.9)
where Z solves
Minimize |Z — ¥||% subject to Z € . (A.10)

Therefore (see justification later), assuming without loss of generality that the ei-
genvalues in the diagonal ¥ are in increasing order:

(0 O KxK
Z_(O INxN)EIR .



J.B. Francisco et al.| Density-based globally convergent trust-region methods 373

By (A.9), this implies that
Y =0U0",

where the columns U e IRX*VN are eigenvectors associated with the N larger
eigenvalues of Z*. Therefore, by (A.3), the solution of (A.2) is given by

D=S12ys 12 _yyT
where
v =5120. (A.11)

The fact that the columns U € IRX*N are eigenvectors associated with the
N larger eigenvalues of Z* implies that these columns are eigenvectors associated
with the N smaller eigenvalues of —uZ*. But

—uZk =Gk — uy*
— g 12ys1/2 _ MS]/ZDSI/Z
=S7V2(W — uSDS)S™/2,

By (A.11) and the orthonormality of the columns of U we obtain (9).
Moreover, by (A.11),

[S~12(w — uSDS)S™V21U; = AU;

is equivalent to [W — uSDS]V; = A;SV;.
To finish the proof, let us compute Qqpt, the functional value of (10) at the
solution Diyia):

Qopt = Tr2W (Dysial — D) + uTr[(Dyial — D)S(Dysial — D)S]

= 2Tr[W Dyyiall —2TI’[W[)] + uTr(Dirial S Dyial S — DtriaIS[)S - DSDtriaIS
+DSDS)

= 2Tt[W Dysial] —2Te[W D] 4 pTr(Dysial S Diriar S) — 21 Tr(D S Diyia1 S)
+uTr(DSDS)

= 2Tt[W Dysiat] —2uTr(D S Dyyia S) — 2T [W D]+ p[ Tr(Dyyia1 S Disial )
+Tr(DSDS)]

= 2Tt[W Dysjat] — 0D S Dria1 S1 + c,

where since DipialS DirialS = DiriatS and Tr(Dyyia1S) = N,

¢ = _2Tr[Wl_)] + uITr(Dyriar S Dirial S) + TI‘(DSDS)]
= —2Tr[WD] + u[Tr(DyiaS) + Tr(DSDS)]
= —2Tr[WD] + u[N + Tr(DSDS)].
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Therefore,

Qopt = 2Tr[(W — uSDS) Dysigt] + ¢ = 2Te[(W — uSDS)VVT] + ¢
= 2Tr[V Diag(ry, -, An)VI ] +c
=21 4...+An) +c,

as we wanted to prove. O
To complete the arguments that prove theorem 1, let us justify the given
solution of (A.10).
Write ¥ = Diag(Ay,..., k) and Z = (z;;). Assume, without loss of gen-
erality, that A| < Ay <--- < Ag. Since Z = ZT the constraint ZZ = Z is

Zij ZZZiijkVi, j=1,...,K.
We define the relaxed problem

K
Minimize ||Z — E||% subjectto Z = ZT,Tr(Z) =N,z = Zz,-zj,i =1,...,K.

(A.12)

The constraints of (A.12) are a subset of the constraints of (A.10). Therefore, if
a global solution of (A.12) is feasible for (A.10), it will also be a global solution
of (A.10).

Now, (A.12) may be written as:

Minimize Z(Z” A)? +ZZZU

i=1 j#i
subject to Z = ZT, Tr(Z) = N and
i —Zii-I-Zz,-Zj =0, i=1,...,N.
J#
This is equivalent to
K
Minimize » 7} — 2ziihi + D 2;; (A.13)
i=1 i
subject to Z = Z7T, ZIKZI zii = N and

Gi=zi— D upi=1...,N (A.14)
J#
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Replacing (A.14) in (A.13) and simplifying, we obtain that the relaxed problem
is equivalent to

K
Minimize 2 (zii — 2ziihi) (A.15)
i=1
subject to
K
z=2".>"zi=N, (A.16)
i=1
and
Gi—zi=—.25, i=1....N. (A.17)
j#i

Now, consider the linear programming problem

K
Minimize » (1 — 2,z (A.18)
i=1
subject to
K
z=2".>"zi=N, (A.19)
i=1
and
0<zi<l, i=1,...,N. (A.20)

A global solution Zgop of (A.18)~(A.20) is such that z;; =1 for all i = K, K —
l,...,K =N+ 1 and z;; =0 for i # j. Since the constraint (A.17) implies the
constraint (A.20) and Zgy, satisfies (A.17) it turns out that Zgp is also a global
solution of (A.15)~(A.17). So, Zgop is a solution of (A.12). Since it is obviously
feasible for (A.10), it is a global solution of (A.10).

A.2. Structure of the LigFy example

The structure of the LigFg example is provided in table A.1. The structure
of the distorted LigFg corresponds to multiplying all coordinates in table A.l
by 2.
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Table A.1
Structure of the LigFg example.

Atom X y Z

Li 0.00 3.00 3.00
Li 0.00 —3.00 3.00
F 0.00 0.00 3.00
Li 0.00 0.00 6.00
F 0.00 0.00 9.00
Li 0.00 0.00 12.00
F 0.00 0.00 15.00
Li 0.00 0.00 18.00
F 0.00 0.00 21.00
Li 0.00 0.00 24.00
F 0.00 0.00 27.00
Li 0.00 0.00 30.00
F 0.00 0.00 33.00
Li 0.00 0.00 36.00
F 0.00 0.00 39.00
Li 0.00 0.00 42.00
F 0.00 3.00 42.00
F 0.00 —3.00 42.00
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